Sheet 1 - INTRODUCTION

$1-\quad a=8.5 \mathrm{~m} / \mathrm{s}^{2}$

2- \quad S.G. $=2.94$
Metric System
S.V. $=0.001 \mathrm{~cm}^{3} /$ Dyne

3- $\quad \rho=740.1 \mathrm{~kg} / \mathrm{m}^{3}$
S.I. System
S.G. $=0.74$

4- $\quad \mu=0.04$ Pa.s
S.I. system

5- $\quad(\mathrm{dv} / \mathrm{dy})=19.23 \mathrm{rad} . \mathrm{s}^{-1}$
$\tau=0.923 \mathrm{~Pa}$
$v=5.257 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$

Sheet 2 - STATICS OF FLUIDS

1- $\quad P=101396.16 \mathrm{~N} / \mathrm{m}^{2}$

Static Pressure Calculation

Compute pressure from fluid column height or column height from pressure
© 2015 LMNO Engineering, www.LMNOeng.com Make Selections:

Research, and Software, Ltd.		User Enters Density	\checkmark
	Click to Calculate	Compute Pressure	\checkmark
Pressure, P: 101361.02		N/m2 (Pa)	\checkmark
Height, h:Mass or Weight Density:	0.760	m	\checkmark
	13600	kg/m3	\checkmark

2- $\quad \mathrm{P}=1048 \mathrm{~kg} / \mathrm{m}^{2}$
$\boldsymbol{\&} \mathrm{h}=1.048 \mathrm{~m}$ of water

3- $\quad \mathrm{P}=7000 \mathrm{~kg} / \mathrm{m}^{2}$
OR $\quad \mathrm{h}=7 \mathrm{~m}$ of water

4- $\quad \mathrm{h}=31.4 \mathrm{~cm}$

5- $\quad \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=9880 \mathrm{~kg} / \mathrm{m}^{2}$

6- $\quad P_{B}=0.977 \mathrm{~kg} / \mathrm{cm}^{2}$

7- $\quad \mathrm{W}_{\mathrm{car}}=14080 \mathrm{~N}=1435.3 \mathrm{~kg}=1.44 \mathrm{t}$

8- Max pressure will occur at point (2).

$$
\mathrm{F}_{\mathrm{AB}}=98100 \mathrm{~N}
$$

9- $\quad \mathrm{F}=1 * 3.67 * 0.6=2.2 \mathrm{t}$
$\mathrm{h}_{\mathrm{p}}=3.69 \mathrm{~m}$

$10-\quad \mathrm{M}=0.23 \mathrm{t} . \mathrm{m}$

11- $\mathrm{F}_{\mathrm{H}}=4.5 \mathrm{t}$
$\mathrm{F}_{\mathrm{V}}=7.07 \mathrm{t}$
$\therefore \mathrm{F}=8.38 \mathrm{t}$
$\alpha=\tan ^{-1}(1.57)=57^{\circ} 30^{\prime}$

12-
$\therefore \mathrm{F}_{\mathrm{H}}=62.4 * 10 * 24=14976 \mathrm{lb}$
$h_{p}=\frac{\left(32 \sin ^{2} 90\right)}{10 *(4 * 6)}+10=10.13 \mathrm{ft}$

B
$2^{n d}$ Year Civil - 2015

The vertical force $F_{\underline{V}}$:
$\mathrm{W}_{1}=11980.8 \mathrm{lb}$
$\mathrm{W}_{2}=62.4 *\left(0.25 * \pi(4)^{2} * 6\right)=4704.85 \mathrm{lb} \mathrm{lb}$
$\therefore \mathrm{F}_{\mathrm{V}}=\mathrm{W} 1+\mathrm{W} 2=11980.8+4704.8=16685.6 \mathrm{lb}$

To get location of $F_{\underline{v}}$:
$\mathrm{M}_{1}=0$
$\mathrm{x}_{2}=4 \mathrm{r} / 3 \pi=1.7 \mathrm{ft}$
$\mathrm{W}_{1} * \mathrm{x}=\mathrm{W}_{2} *(0.3-\mathrm{x})$
$\therefore \mathrm{x}=0.08 \mathrm{ft}$
$\therefore \mathrm{F}_{\mathrm{V}}$ acts vertically downward at 2.08 ft from the tank edge

The total force F:

$\mathrm{F}=\left(\mathrm{F}_{\mathrm{H}}^{2}+\mathrm{F}_{\mathrm{V}}{ }^{2}\right)^{1 / 2}=\left(14976^{2}+16685.6^{2}\right)^{1 / 2}=22421 \mathrm{lb}$ $\tan \alpha=\mathrm{F}_{\mathrm{V}} / \mathrm{F}_{\mathrm{H}}=16685.6 / 14976=1.11$
$\alpha=\tan ^{-1}(1.11)=48.1^{\circ}$

13-

14- (a) $\mathrm{V}_{\text {displaced }}=1.52 \mathrm{~m} 3$
(b) Centre of Buoyancy $(B)=0.38 / 2=0.19 \mathrm{~m}$ from the base

Centre of Gravity $(G)=0.5 / 2=0.25 \mathrm{~m}$ from the base
\therefore B is below G

The block may be stable or unstable. The metacentre M has to be calculated.
If M is above G , the block will be stable.
If M is below G , the block will be unstable.

Sheet 4

DYNAMICS OF FLUID FLOW

$1-\mathrm{v}_{1}=22.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}^{2} / 2 \mathrm{~g}=25.8 \mathrm{~m}$
$\mathrm{Q}=0.044 \mathrm{~m}^{3} / \mathrm{sec}$

2- $\mathrm{P}_{2}=72.9903 \mathrm{t} / \mathrm{m}^{2}$
$\mathrm{P}_{2}=72.9903 / 10=7.3 \mathrm{~kg} / \mathrm{cm}^{2}$

3- $\mathrm{h}_{\mathrm{m}}=29.5 \mathrm{~cm}$

5- $\mathrm{d}_{2}=4.4 \mathrm{~cm}$
The reading of a differential mercury manometer is 60 cm .

Sheet 5

FLOW THROUGH AN ORIFICE

1- (a) $\mathrm{Q}_{\mathrm{R}}=\mathrm{C}_{\mathrm{d}} \mathrm{Q}_{\mathrm{I}}=0.62 \mathrm{x}(178857.3)=110891.5 \mathrm{~cm}^{3} / \mathrm{sec}$
(b) $\mathrm{v}_{\mathrm{R}}=\mathrm{C}_{\mathrm{v}} \mathrm{v}_{\mathrm{I}}=0.9 \mathrm{x}(1328.83)=1322.2 \mathrm{~cm} / \mathrm{sec}$

2- The fall of water $=4-2.3=1.7 \mathrm{~m}$
$\mathrm{T}=379.1 \mathrm{sec}$

Sheet 6

MOMENTUM EQUATION

1- $\mathrm{F}_{\mathrm{x}}=0-\rho\left(\pi \mathrm{D}^{2} / 4\right) \mathrm{u}^{2}=70.75 \mathrm{~N}$
$\mathrm{F}_{\mathrm{y}}=0$

2- $\mathrm{F}_{\mathrm{x}}=-200.01 \mathrm{~N}$
Thus the required holding force is 200.01 N in +x direction.
In y-direction:
There are no forces due to momentum change or pressure.
$\therefore \mathrm{F}_{\mathrm{Y}}=0$

Sheet 7

FLOW THROUGH PIPES

1- (a) $Q=0.034 \mathrm{~m}^{3} / \mathrm{sec}$
$2-\mathrm{Q}=0.042 \mathrm{~m}^{3} / \mathrm{sec}$

3-

1. Moody chart:
$\mathrm{k} / \mathrm{d}=0.05 \times 10^{-3} / 0.06=0.0011 \& \operatorname{Re} \quad \therefore$ from chart, $\mathrm{f}=0.0065$

$$
\mathrm{h}_{\mathrm{f}}=\frac{4 \mathrm{fL} \mathrm{v}^{2}=4 \times 0.0065 \times 1 \times(0.796) 2}{2 \mathrm{~g} \mathrm{~d}}=0.0209 \mathrm{~m} / \mathrm{m} \text { of pipe }
$$

2. Smooth pipe i.e. Blasius equation:

$$
\begin{aligned}
& \mathrm{F}=0.079 / \mathrm{R}_{\mathrm{e}}^{0.25}=0.079 /(31840)=0.0059 \\
& \mathrm{~h}_{\mathrm{f}}=\frac{4 \mathrm{f} \mathrm{~L} \mathrm{v}^{2}=4 \times 0.0059 \times 1 \times(0.796) 2}{2 \mathrm{~g} \mathrm{~d}}=0.02 \mathrm{~m} / \mathrm{m} \text { of pipe }
\end{aligned}
$$

$4-\mathrm{v}_{\mathrm{C}}=1.27 \mathrm{~m} / \mathrm{s}$
$P_{B}=-41.11 \mathrm{kN} / \mathrm{m}^{2}$
$5-\mathrm{v}_{3}=7.67 \mathrm{~m} / \mathrm{s}$
$\mathrm{Q}=\mathrm{v}_{3} \times \mathrm{A}=7.67 \times\left(\pi(0.09)^{2} / 4\right)=0.049 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{P}_{2 \mathrm{abs}}=58.88 \mathrm{kPa}$
6- (a) $P_{F}=0$
(b) P_{A} and P_{B}
(c) The decreased pressure energy at B is converted to velocity energy.
(d) The pressure at C is the lowest due to the highest position energy.
(e) The pressure at E is the highest due to the lowest position energy.
(f) P_{B} and P_{D} are the same due to the same position and velocity heads.
$7-\mathrm{d}_{\mathrm{n}}=0.372 \mathrm{~m}=37.2 \mathrm{~cm}$

8-(a) $\mathrm{P}_{\mathrm{C}} / 1=4.66 \mathrm{~m}=4.66 \times\left(1000 / 10^{4}\right)=0.47 \mathrm{~kg} / \mathrm{cm}^{2}$
(b)

$9-\mathrm{Q}=0.164 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{Q}=0.162 \mathrm{~m}^{3} / \mathrm{s}$

10- Lecture Notes, Example 6.

11- Lecture Notes, Example 8.

12- Lecture Notes, Example 10.

